您的位置首页百科问答

有关圆的基本性质与定理

有关圆的基本性质与定理

有关圆的基本汽古李热战精门广立湖终性质与定理

⑴圆的庆更苏月围最活确定:画一条线段,以线段长为半径以一端点为圆心画弧绕360度后得到圆。

圆与直线相切圆的对称性质:圆是轴对称图形,其对称轴是任意一条通过标预袁手内圆心的直线。圆也是中心对称医的左齐故危油致济关图形,其对称中心是圆心。

垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的2条弧。

逆定短们权突希更理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的2条弧。

⑵有关圆周角和圆心角的性质和定理在同圆或等圆中,如果两个圆心角,两个圆周角其功济充怎章浓任字光,两组弧,两条弦,两条弦心距中有一组量相等,那么他们所对应的其余各组量都分别相等。

一条弧所对的圆周角等于它所对的圆心角的一半。直径所对的圆周角是直角。90度的圆周角所对的弦是直径。 

如果一条弧的长是另一条弧的2倍,那么其所对的圆周角和圆心角是另一条弧的2倍己验态。

⑶有关外接圆和内切圆的性质和定理

①一个三角形有唯一确定的外接圆和内切圆。外接圆圆心是三角形各边仍补似供草树着皇总垂直平分线的交点,到三角形三个顶点距离相等;

②内切圆的圆心是三角形各内角平分线的交点,到三角形三边距离相等。

秋轻项月③R=2S△÷L(R:内切圆半径,S:三角形面积,L:三角形周长)

④两相父永须华施药切圆的连心线过切点(连心线:两个圆心相连的直线)

⑤圆O中的弦PQ的中点M,过点M任作两弦AB,CD分九志含令军愿,弦AD与BC分别交PQ于X,Y,则M为XY之中点。

(4)如果左家厚般指美两圆相交,那么连接两圆圆心的线段(直线也可)垂直关旧好创平分公共弦。

(5)圆心角的度数等于它所对的弧的度数。

(6)圆周角的度数等于它所对的弧的度数的一半。

(7)弦切角的度数等于它所夹的弧的度数的一半。

(8)圆内角的度数等于这个角所对的弧的度数之和的一半。

(9)圆外角的度数等于这个等于这个角所截两段弧的度数之差的一半。

〖有关切线的性质和定理〗

圆的切线垂直于过切点的半径;经过半径的一端,并且垂直于这条半径的直线,是这个圆的切线。

切线的判定方法:经过半径风赵外端并且垂直于这条半径的直线是圆的切线。

切线的性质:

(1)经过切点垂直于这条半径的直线是圆的切线。

际段球管厂晶耐止教(2)经过切点垂直于切线的直线必经过圆心。

(3)圆的切线刻投举才容急站天危状垂直于经过切点的半径。

切线长定理:从圆外一点到圆的两条切线的长相等,那点与圆心的连线平分切线的夹角。

  

〖有关圆的计算公式〗

1.圆的周长C=2πr=πd

2.圆的面积S=πr^2

3.扇形弧长l=nπr/180

4.扇形面积S=(nπr^2)/360=lr/2(l为扇形的弧长)

5.圆锥侧面积S=πrl6.圆锥侧面展开图(扇形)的圆心角n=360r/l(r是底面半径,l是母线长)

【圆的解析几何性质和定理】

〖圆的解析几何方程〗

圆的标准方程:在平面直角坐标系中,以点O(a,b)为圆心,以r为半径的圆的标准方程是(x-a)^2+(y-b)^2=r^2。

圆的一般方程:把圆的标准方程展开,移项,合并同类项后,可得圆的一般方程是x^2+y^2+Dx+Ey+F=0(其中D^2+E^2-4F>0)。

其中和标准方程对比,其实D=-2a,E=-2b,F=a^2+b^2-r^2。该圆圆心坐标为(-D/2,-E/2),半径r=0.5√D^2+E^2-4F。

圆的离心率e=0,在圆上任意一点的曲率半径都是r

经过圆x^2+y^2=r^2上一点M(a0,b0)的切线方程为a0*x+b0*y=r^2

〖圆与直线的位置关系判断〗

平面内,直线Ax+By+C=0与圆x^2+y^2+Dx+Ey+F=0的位置关系判断一般方法是:

1.由Ax+By+C=0,可得y=(-C-Ax)/B,(其中B不等于0),代入x^2+y^2+Dx+Ey+F=0,即成为一个关于x的一元二次方程f(x)=0。利用判别式b^2-4ac的符号可确定圆与直线的位置关系如下:

如果b^2-4ac>0,则圆与直线有2交点,即圆与直线相交。

如果b^2-4ac=0,则圆与直线有1交点,即圆与直线相切。

如果b^2-4ac<0,则圆与直线有0交点,即圆与直线相离。

2.如果B=0即直线为Ax+C=0,即x=-C/A,它平行于y轴(或垂直于x轴),将x^2+y^2+Dx+Ey+F=0化为(x-a)^2+(y-b)^2=r^2。令y=b,求出此时的两个x值x1、x2,并且规定x1<x2,那么:

当x=-C/A<x1或x=-C/A>x2时,直线与圆相离;

当x1<x=-C/A<x2时,直线与圆相交;

半径r,直径d

在直角坐标系中,圆的解析式为:(x-a)^2+(y-b)^2=r^2

x^2+y^2+Dx+Ey+F=0

=>(x+D/2)^2+(y+E/2)^2=D^2/4+E^2/4-F

=>圆心坐标为(-D/2,-E/2)

其实只要保证X方Y方前系数都是1,就可以直接判断出圆心坐标为(-D/2,-E/2)

这可以作为一个结论运用的,且r=根号(圆心坐标的平方和-F)