极坐标定积分是以R为半径,θ为积分变元,计算曲线面积的积分。
设曲线ρ=R在区间[θ1,θ2]上非负连续,当dθ足够小时,曲线面积近似为直角三角形面积,等于一边长度乘以高,故曲线面积积分变量为1/2R×Rdθ,由此得到曲线周长面积的定积分。
想要了解更多“极坐标定积分”的信息,请点击:极坐标定积分百科
极坐标定积分是以R为半径,θ为积分变元,计算曲线面积的积分。
设曲线ρ=R在区间[θ1,θ2]上非负连续,当dθ足够小时,曲线面积近似为直角三角形面积,等于一边长度乘以高,故曲线面积积分变量为1/2R×Rdθ,由此得到曲线周长面积的定积分。
想要了解更多“极坐标定积分”的信息,请点击:极坐标定积分百科