您的位置首页生活百科

什么是欧拉线

什么是欧拉线

三角形的外心、重心、九点圆圆心、垂心,依次位于同一直线上,这条直线就叫三角形的欧拉线。 欧拉于1765年在它的著作《三角形的几何学谈吵》中首次提出定理:三角形的重心在欧拉线上,即三角形的重心、垂心和外心共线。 欧拉线的证明:作△ABC的外接圆,连结并延长BO,交外接圆于点D。连结AD、CD、AH、CH、OH。作中线AM,设AM交OH于点G’。 ∵ BD是直径, ∴ ∠BAD、∠BCD是直角。 ∴ AD⊥AB,含和侍DC⊥BC。 ∵ CH⊥AB,AH⊥BC, ∴ DA‖CH,DC‖AH。 ∴ 四边棚誉形ADCH是平行四边形, ∴ AH=DC。 ∵ M是BC的中点,O是BD的中点。 ∴ OM= DC。 ∴ OM= AH。 ∵ OM‖AH, ∴ △OMG’ ∽△HAG’。 ∴ 。 ∴ G’是△ABC的重心。 ∴ G与G’重合。 ∴ O、G、H三点在同一条直线上。