实际上是求tanx的微积分。
∫tanxdx
=∫sinx/cosxdx
=-∫d(cosx)/cosx
=-ln|cosx|+c
所以-ln|cosx|+c的导数为tanx。
其导数:
y=羡漏tanx=sinx/cosx
y'=(sinx'*cosx-sinx*cosx')/(cosx)^2
=1/(cosx)^2
tanx
=sinx/cosx
=(cosx+sinx)/cosx
=secx
扩展资料
第一步:确定函数的搜兄定义域,如本题函数的定义域为R。
第二步:求f(x)的导数f′(x)。
第三步:求方程f′(x)=0的根。
第四步:利用f′(x)=0的根和不可导点的x的值从小兄漏烂到大顺次将定义域分成若干个小开区间,并列出表格。
第五步:由f′(x)在小开区间内的正、负值判断f(x)在小开区间内的单调性。