假定函数f1(z)与f2(z)分别在区域D1与D2中解析,D1与D2有一公共部分,在其上f1(z)=f2(z)成立。于是将f1(z)与f2(z)在D1及D2内的全体点上的数值集合看成一个解析函数f(z),则f(z)在D=D1+D2中解析,在D1中f(z)=f1(z),而在D2中f(z)=f2(z)。
函数f2(z)可以看成由拓展f1(z)的定义区域所得,故称它为f1(z)的解析延拓。当然,根据同样理由,f1(z)是f2(z)的解析延拓,这种拓展原给函数定义的方法称为解析延拓。
想要了解更多“解析延拓”的信息,请点击:解析延拓百科