对于给定的A、B,能够找到这样的一个P,使得:P^(-1)AP=B;或者:能够找到一个矩阵C,使得A和B均相似于C。
只是行列式相等,或者秩相等,完全不够充分条件。特征多项式相同,但是没有n个线性无关的特征向量也不行,只有D满足条件。充分条件是有n个线性无型简态关的特征向量。
判断两个矩阵相似的辅助方法:
1、判断特征值是否相等;
2、判断行列式是否相等;
3、判断迹是否相等;
4、判断秩是否相等。
矩阵特征向量的几何含义
矩阵乘以一个向量的结果仍是同维数的一个向量。因此,矩阵乘法对应了一个变换,把一个向量变成同维数的另一个向量。
比如可卜源以取适当的二维方阵,使得这个变换的效果就是将平面上的二维变量逆时针旋转30度。这时除了零向量,没有其他向量可以在平面上旋转30度而不咐册改变方向的,所以这个变换对应的矩阵(或者说这个变换自身)没有特征向量(注意:特征向量不能是零向量)。
综上所述,一个变换(或者说矩阵)的特征向量就是这样一种向量,它经过这种特定的变换后保持方向不变,只是进行长度上的伸缩而已。
参考资料来源:百度百科-相似矩阵