所谓二阶导数,即原函数导数的导数,将原函数进行二来自次求导。
例如:y=x^2的导数为y=2x,二阶导数即y=2x的导数为y=2。
二阶导数的几何意义
意义如下:
(1)切线斜率变化的速度
(2)函数的凹凸咐仔派性。
关于你的补充:
二阶导数是比较理论的、比衡360问答贺较抽象的一个量,它不像一阶导数王血技情角德状除机六那样有明显的几何意义,因为它表示的是一阶导数的变化率。在图形上,它主表要表现函数的凹凸性,直观的说,函数是向上突起的,还是向下突起的。
应用:
如果一个函数f(x)在某个区间I上有f''(克将席步宁速落倒生苦西x)(即二阶导数)>戚掘0恒成立,俯弧碘旧鄢搅碉些冬氓那么对于区间I上的任意x,y,总有:
f(x)+f(y)≥2f[杀械短热(x+y)/2],如北乎审志规经果总有f''(x)<0成立,那么上式的不等号反向。
几何的直观解释:如果如果一个函数f(x)在某个区间I上阳血殖化地有f''(x)(即二阶导数)>0恒成立,宪征测但效带九那么在区间I上f(x)的图象上的任意两点连出的一条线段,史势管这两点之间的函数图象都在该线段的下方,反之在该线段的上方。